БИТВА ТЕХНОЛОГИЙ

Л. А. ТУМАНЦЕВА, пресс-служба НП «АВОК СЕВЕРО-ЗАПАД»

Рекуперация или рециркуляция? Как повысить энергоэффективность в системах кондиционирования воздуха? Этим актуальным вопросам были посвящены открытые дебаты «Битвы технологий», прошедшие в рамках выставок «ЭкспоКлимат» и

Позицию рециркуляции отстаивал ведущий инженер United Elements Engineering Алексей Волков. За рекуперацию бился заместитель генерального директора по техническим вопросам ООО «РМ Вент» Игорь Кисляков.

Рециркуляция

BalticBuild.

Открывая дебаты, Алексей Волков отметил, что расчет приточной и вытяжной вентиляции объекта является многофакторным процессом, учитывающим балансы вентилируемого помещения по следующим параметрам:

- явная теплота (для холодного и теплого времени года);
- масса выделяющихся вредных или взрывоопасных веществ;
- влажность воздуха.

При этом максимальное из рассмотренных значений воздухообмена принимается как расчетное.

Специалистам известно, что обеспечение гигиенических условий в помещении требует организации притока наружного чистого воздуха. Приточный воздушный поток обычно рассчитывается по гигиеническим нормам нахождения человека в помещении, а именно: 20 м 3 /ч — для офисного работника, 80 м³/ч — для рабочего. Для жилых помещений воздушный поток, как правило, обеспечивающий воздушное отопление с целью поддержания комфортной температуры, существенно превышает поток приточного воздуха. Поэтому в системах воздушного отопления установки имеют расход воздуха, рассчитываемый 4-6-кратно от общего объема воздуха. Далее докладчик перешел к конкретным расчетам.

Вводные данные: площадь производственного помещения — 150 м^2 , высота — 3 м, в помещении находятся 15 рабочих и 3 ИТР.

При таких условиях расход воздуха на отопление рассчитывается так:

 $150 \times 3 \times 5 = 2250 \text{ m}^3/\text{y};$

а приток свежего воздуха составит:

 $15 \times 80 + 3 \times 20 = 1260 \text{ m}^3/\text{q}.$

В этом случае без рециркуляции, равной

 $2\ 250 - 1\ 260 = 990\ \text{m}^3/\text{q}$

не обойтись, иначе проект будет не конкурентоспособен.

Кроме существенного снижения затрат на подогрев приточного наружного воздуха рециркуляция позволяет избежать снижения влажности в помещении, возникающего вследствие потери влаги с отводимым воздухом.

Отдельно были рассмотрены аргументы в пользу применения рециркуляции в ламинарных вентиляционных системах операционных, рассчитываемых в соответствии с ΓΟCT P 52535-2006.

Исходные данные были следующими: площадь поперечного сечения однонаправленного потока воздуха — не менее 9 м², скорость однонаправленного ламинарного потока воздуха — 0.27 м/с, норма расхода чистого приточного воздуха на одного человека — 100 м³/ч, норма расхода чистого приточного воздуха на один наркозный аппарат — 800 м³/ч.

Таким образом, требуемое количество воздуха, перемещаемого в пределах ламинарного потолка, будет равно:

 $9 \times 0.27 \times 3600 = 8750 \text{ m}^3/\text{ч}.$

Бригада из четырех человек, пациент и два наркозных аппарата потребуют приток чистого воздуха, равный:

 $5 \times 100 + 2 \times 800 = 2 \times 100 \,\mathrm{M}^3/\mathrm{H}$.

Столь существенная (более чем 4-кратная) разница потребления количества воздуха также предполагает использование его частичной рециркуляции в количестве:

 $8750 - 2100 = 6650 \text{ m}^3/\text{q}.$

В завершение выступления Алексей Волков рассмотрел преимущества применения рециркуляции в вентиляционных системах бассейнов. Так, в холодное время года наружный воздух более сухой, но и в этом случае удаление влаги из воздуха в бассейне за счет проветривания требует очень больших расходов приточного воздуха, многократно превосходящего гигиенические требования (80 м³/ч на одного купающегося).

В системе вентиляции бассейна площадью 50 х 25 м, в котором в зимнее время находятся 50 человек в чаше и 500 человек на трибунах, необходимый приток свежего воздуха составит:

 $80 \times 50 + 500 \times 20 = 14000 \text{ m}^3/\text{q}$.

Осушение воздуха конденсационными или адсорбционными осушителями происходит на линии рециркуляции. Вентиляционная установка, обеспечивающая приток свежего воздуха и его ассимиляцию, рассчитана на 48 000 м³/ч.

ø

При таких условиях рециркуляция составит: $48\,000-14\,000=34\,000\,\mathrm{m}^3/\mathrm{q}$,

что также делает ее применение более эффективным. Из приведенных примеров следовали выводы:

- при низкой эффективности рекуперации наиболее целесообразно применять рециркуляцию;
- в старых зданиях с невысокой герметичностью ограждающих конструкций роль рекуперации не велика, а рециркуляция может осуществляться в достаточно высокой степени.

Однако докладчик также отметил, что при повышении эффективности рекуперации — выше 0,7—0,8 — на первый план выходит энергосбережение за счет применения рекуператоров, а поскольку в современных герметичных зданиях необходим достаточный приток свежего воздуха, то рециркуляция может осуществляться лишь частично, и роль эффективной рекуперации в этом случае резко возрастает.

Дискуссия

Первый вопрос докладчику задал модератор дебатов президент НП «ABOK Северо-Запад», д. т. н., профессор Александр Гримитлин:

— Во влажных помещениях, кроме влажностных и тепловых выделений, есть также вредные выделения пыли и газа. Что делать с постоянным круговоротом этих вредностей при использовании системы рециркуляции?

Алексей Волков отвечает:

— Сегодня действительно стоит задача по удалению излишней влажности из помещений и недопущения выпадения влаги на стенах бассейнов. Для этого в линии рециркуляции устанавливается система «тепловой насос — пластинчатый теплообменник», которая дает возможность вернуть обратно в цикл и влагу, и часть теплоты и конденсации, которая в противном случае являлась бы потерей. Обработка воздуха на линии рециркуляции при помощи установки дополнительных фильтров также улучшает качество перегоняемого воздуха.

Наметившаяся брешь в обороне рециркуляции была атакована вопросом Игоря Кислякова:

— Применение систем рециркуляции в бассейнах не решает проблему накопления на стенах, в том числе и хлорсодержащих осадков. Что с этим делать и к чему это может привести?

Алексей Волков:

— Обработка воздуха при использовании рециркуляции может включать систему фильтров для удаления различных видов вредностей, в частности хлора. К тому же эффективность использования рекуперации и рециркуляции в бассейнах зависит от времени суток, то есть от активности использования объекта. Ночью, к примеру, эффективность применения рециркуляции возрастает.

Рекуперация

Свои аргументы в защиту рекуперации представил участникам битвы Игорь Кисляков, начав с факторов, определяющих внутреннюю среду помещений. Именно в помещениях человек проводит 85% времени в сутки, потребляет 1 кг пищи, 3 л воды и 30 (!) кг воздуха. В оснащенных вентиляцией комнатах, где постоянно перемещаются люди, в воздухе остаются частицы размером в несколько миллиметров и менее, которые глубже всего проникают в дыхательные пути (так называемые вдыхаемые частицы). И это при учете того, что пыль в помещении содержит массу специфических аллергенов.

Следующие факторы микробиологические и микологические. Находящиеся в воздухе микроскопические живые организмы (например, вирусы, споры грибов и клетки бактерий) обнаруживаются во всех помещениях. Эти организмы присутствуют в воздухе как отдельно в виде мелких частиц, так и в виде агрегатов различного размера, а также в форме микробиологических и микологических включений в другие частицы.

Кроме этого, существует широко известная взаимосвязь между долговременной конденсацией влаги на внутренней поверхности оконных стекол зимой, наводнением помещения домашними пылевыми клещами и аллергическими и респираторными заболеваниями, что создает проблемы для здоровья людей.

Также внутреннюю среду помещения определяют газообразные и химические агенты, находящиеся в многочисленных источниках формальдегида, таких, как оргалит, одежда, табачный дым и т. д.

Все вышеперечисленные факторы не способствуют здоровому образу жизни человека, поэтому их необходимо удалять из воздушного пространства помещений, что возможно сделать при использовании систем рекуперации воздуха.

Далее Игорь Кисляков рассказал о системах вентиляции с различными утилизаторами тепла: пластинчатым, гликолевым и фреоновым — с точки зрения их энергоэффективности, т. к. нагрев воздуха требует дополнительных энергозатрат (основные затраты по вентиляционным системам приходятся на его эксплуатацию и составляют 80% от всех инвестиций).

Также докладчик напомнил о том, что с ростом цен на энергоносители эксплуатационная составляющая будет постоянно расти, поэтому он предложил как наиболее энергоэффективный вариант использование системы рекуперации с роторным регенератором, имеющим возможность утилизации тепла и холода, плавную регулировку режимов работы и жесткую конструкцию. Рекуператор не замерзает до $-40\,^{\circ}$ C, а его температурный КПД при равных расходах приточного и вытяжного воздуха составляет 85%(!).

В завершение своего выступления Игорь Кисляков добавил, что применению рекуперации тепла также способствуют:

- государственная политика в области энергосбережения;
- рост цен на все виды энергоносителей;
- ограничения на устанавливаемую мощность;
- высокие требования к микроклимату современных зданий.

И снова дискуссия

Обсуждение снова начал с вопроса Александр Гримитлин:

 Что происходит с воздухообменом, являющимся также ресурсом, при использовании системы рекуперации в производственных помещениях, цехах предприятий?

Игорь Кисляков ответил:

— Изменение расхода воздуха является функцией, которая должна оставаться неизменной. Для этого нужно либо растворять какие-то вредности, либо поддерживать температуру. Использование рекуператоров одновременно с системными решениями, поддерживающими постоянный объем воздуха, решает эту задачу.

Далее вопрос задал Алексей Волков:

— Какова роль рекуперации в старых зданиях, где плотность и герметичность конструкций невелики, а приток воздуха существует и без применения системы?

Игорь Кисляков парирует:

— Системы рекуперации не допускают неконтролируемого перетока воздуха через строительные конструкции, препятствуя образованию плесени и грибков, что в свою очередь улучшает внутренний микроклимат в помещениях и здоровье человека.

Резюмируя итоги дискуссии, Александр Гримитлин отметил: «Рециркуляция — эффективнейшее средство, но в сочетании с эффективной очисткой от вредностей. В свою очередь рекуперация также очень эффективна и широко применяется в жилых и общественных зданиях, где уровень комфорта и качества воздуха должен быть достаточно высок».

www.stroy-profi.info Nº7 | 2012 | **50**